PH1 Computational Ion Optics with IBSimu

Taneli Kalvas

taneli.kalvas@jyu.fi FL114

University of Jyväskylä, Department of Physics

https://ibsimu.sourceforge.net/jss2015

Participants

Lecturer:

Taneli Kalvas, taneli.kalvas@jyu.fi

Course tutors:

Risto Kronholm, risto.j.kronholm@student.jyu.fi Janne Laulainen, janne.p.laulainen@student.jyu.fi

Who else?

The course

- First week: Introductory part (1 ECTS)
 - Lectures 3×2 hours
 - Demonstrations 3×2 hours
- Second week: Main part (3 ECTS)
 - Lectures 2×2 hours
 - Demonstrations 5×2 hours
 - Homework!

Schedule

Schedule

Introductory part

Wed 5.8. 10–12, 14–16 Thu 6.8. 10–12, 14–16 Fri 7.8. 10–12, 14–16

Main part

Mon 10.8. 10–12, 14–16 Tue 11.8. 10–12, 14–16 Wed 12.8. 12–14 Thu 13.8. 12–14 Fri 14.8. 12–14

Contents

Main part

- What can IBSimu do?
- Full-scale examples
- Error-analysis

What can IBSimu do?

Start of development

Work with IBSIMU started at LBNL in 2004 when designing a slit-beam neutron generator with nanosecond scale beam chopping.

Start of development

Particle-in-cell modelling of chopped beam was an important part of the original work. Such capability does not exist currently, but may be implemented with little effort.

Positive plasma model

A positive ion extraction plasma model was added and other difficult three dimensional problems were modelled, for example a slit-beam system for PPPL.

ICIS 2007, J. H. Vainionpaa, et. al., Rev. Sci. Instrum. 79, 02C102 (2008)

PH1, Jyväskylä Summer School 2015, p. 9

Negative plasma model

Negative ion extraction model was developed and used with several designs over the years

Texas A&M 1 mA H^-/D^- ion source extraction design

NIBS 2010, T. Kalvas, et. al., AIP Conf. Proc. 1390, 150 (2011)

Negative plasma model

SNS Baseline 38 mA H⁻ ion source extraction modelling

ICIS 2011, T. Kalvas, et. al., Rev. Sci. Instrum. 83, 02A705 (2012)

PH1, Jyväskylä Summer School 2015, p. 11

Negative plasma model

Proposed new extraction for SNS (100 mA H⁻, 1 A e⁻)

ICIS 2011, T. Kalvas, et. al., Rev. Sci. Instrum. 83, 02A705 (2012)

PH1, Jyväskylä Summer School 2015, p. 12

Surface emission

Surface electron emission simulation for nanographite e-gun

PH1, Jyväskylä Summer School 2015, p. 13

14 GHz ECR extraction

Full scale examples

Slit-beam triode extraction

- 30 mA/cm² H⁺ ions from 3 mm slit
- 2D approximation first, 3D effect studied next
- Triode electrode system for blocking electron back-flow
 - Enables beam space charge compensation
- Choosing simulation parameters, introduction to discrete effects
- Optimizing geometry and voltages for emittance

Slit-beam triode extraction

Wien filter

- Velocity filter using crossed B and E-fields, 3D problem
- Construction of simple geometry with FuncSolids
- Automation: use of plotting tools and diagnostics

Wien filter

Cesium sputter ion source

Cesium sputter ion source

I.S. Iyer et al. / Nucl. Instr. and Meth. in Phys. Res. A 381 (1996) 1-3

Cesium sputter ion source

- Beam starting with low energy causes convergence problems: $\rho = J/v$
- Fixed J is not a valid solution (space charge limited emission in reality)
- Space charge limited emission not implemented yet in IBSimu

Volume production H⁻ ion source LIISA

- 1 mA H^- ions and 5 mA electrons
- 3D problem with magnetic field
- Geometry cylindrically symmetric
- Effects of magnetic field, dumping of electrons

14 GHz ECR at JYFL

- Quick cylindrically symmetric simulation
- Full charge state distribution of N-15
- Emittance growth due to magnetic field
- Analysis using saved binary data, plotting using IBSimu tools

Matrix coefficients for beam transport programs

PH1, Jyväskylä Summer School 2015, p. 25

Traditional transfer matrix optics

Treats ion-optical elements (and drifts) as black boxes with transfer matrices describing the effect to trajectories. In TRANSPORT $X = (x, x', y, y', l, \delta p/p)$

$$X_{i}(1) = \sum_{j} R_{ij} X_{j}(0) + \sum_{jk} T_{ijk} X_{j}(0) X_{k}(0) + \cdots$$

Ideal 1st order quadrupole:

	$\cos kL$	$\frac{1}{k}\sin kL$	0	0	0	0 \
R =	$-k\sin kL$	$\cos kL$	0	0	0	0
	0	0	$\cosh kL$	$rac{1}{k}\sinh kL$	0	0
	0	0	$k \sinh k L$	$\cosh kL$	0	0
	0	0	0	0	1	0
	0	0	0	0	0	1 /

Traditional transfer matrix optics

• The whole system can be described with one matrix:

$$R_{\text{system}} = R_N \cdots R_2 \cdot R_1$$

• Can also transport elliptical envelopes in addition to trajectories:

$$\sigma_1 = R\sigma_0 R^T, \text{ where}$$
$$\sigma = \epsilon \begin{pmatrix} \beta & -\alpha \\ \alpha & \gamma \end{pmatrix}$$

- Advantage: calculation is fast (automatic optimization, etc)
- May include additional space charge induced divergence growth for beam envelopes and/or rms emittance growth modelling for particle distributions.
- Matrices arise from analytic formulation, numerical integration of fields or **fitting to experimental/simulation data**.

JYFL injection line solenoid

• Modelled with FEMM for 100 A induction current

Grid data output (using MATLAB script) within $z \in [0, 350]$, $r \in [0, 50]$ Data mirrored to fill $z \in [-350, 350]$.

IBSimu simulation to track particles through the magnetic field

Linear fitting to $(x_0, x'_0, y_0, y'_0) \rightarrow (x_1, x'_1, y_1, y'_1)$ produces a matrix

	(-0.16945)	0.272915	-0.169915	0.268352	
R =	-1.75785	-0.172501	-1.72776	-0.165878	
	0.169905	-0.268383	-0.169429	0.272935	
	1.72775	0.165847	-1.75778	-0.172471	

This is a transfer matrix for drift + solenoid + drift.

Goal: coefficients L and B_0 for linear solenoid model $R_{sol} =$

($\cos(\phi)\cos(\phi)$	$\sin(\phi)\cos(\phi)/K$	$\sin(\phi)\cos(\phi)$	$\sin(\phi)\sin(\phi)/K$	
	$-\sin(\phi)\cos(\phi)K$	$\cos(\phi)\cos(\phi)$	$-\sin(\phi)\sin(\phi)K$	$\sin(\phi)\cos(\phi)$	
	$-\sin(\phi)\cos(\phi)$	$-\sin(\phi)\sin(\phi)/K$	$\cos(\phi)\cos(\phi)$	$\sin(\phi)\cos(\phi)/K$	
	$\sin(\phi)\sin(\phi)K$	$-\sin(\phi)\cos(\phi)$	$-\sin(\phi)\cos(\phi)K$	$\cos(\phi)\cos(\phi)$	/

where $\phi = \frac{1}{2}B_0L/B_r$ and $K = \phi/L$.

Fitting of drift(0.5 m - 0.5L) + sol (B_0, L) + drift(0.5 m - 0.5L) produced coefficients

 $B_0 = 0.226 \text{ T}$ L = 0.222 m ,

Resulting linear solenoid model vs. real field on axis

Negative ion extraction from plasma

Effect of plasma parameters in simulation

Homework:

How do negative ion extraction plasma model parameters J, $R_e i$, T_t , R_f , ϕ_P , E_0 and T_p affect the solution in IBSimu?

Emittance as a function of beam current

SNS extraction

Emittance as a probe for plasma sheath

PELLIS ion source at JYFL Pelletron accelerator

Experimental emittance

Varying source pressure and filament power

Experimental emittance

Varying source pressure and filament power

Equivalent current is $I_{H^-} = I_e \sqrt{m_e/m_{H^-}}$

PH1, Jyväskylä Summer School 2015, p. 38

Experiment vs. simulation

There seems to be higher charge density at the plasma sheath than what can be calculated from the beam current.

Emittance vs. simulation

Fitting produced $R_{ec} = 3$ and $T_t = 0.75$ eV. Rest of parameters from literature.

Other artefacts of plasma model

The flux direction at sheath edge

- a) In reality
- b) In simulations

